Education:
- Sc.D., Massachusetts Institute of Technology, 2003
- Ph.D.,Tsinghua University, China, 1999
- B.S., Tsinghua University, China, 1994
Research Areas and Descriptors
Mechanics of Materials; Mechanical behaviors of soft active materials; experimental characterization and modeling of nonlinear thermoviscoelastic behaviors of polymers; polymer physics and mechanics; photo-mechanics of light activated polymers; finite deformation constitutive modeling; nonlinear finite element analysis; soft tissue mechanics;
Background
Dr. Qi will join Tech in January, 2014. Currently, he is an associate professor at University of Colorado Boulder. Prior he was a postdoctoral fellow at MIT.
Research
Dr. Qi’ research focuses on the finite deformation multiphsyics modeling of soft active materials, their finite element method implementations and applications to design problem. The material systems include: shape memory polymers, shape memory elastomeric composites, light activated polymers, covalent adaptive network polymers, arterial tissues. Particularly, he is interested in understanding and modeling the evolution of material structure and mechanical properties of these materials under environmental stimuli, such as temperature, light, etc. To assist understanding of mechanical properties, his group routinely conducts thermomechanical or photo-mechanical experiments. Constitutive models developments are typically based on the observations from these experiments. The ultimate goal of the constitutive models is to integrate them with finite element through user material subroutines so that these models can be used to solve complicated 3D multiphysics problems involving nonlinear mechanics.

- J. T. Oden Faculty Fellowship, UT Austin, (2012)
- AFRL summer faculty fellowship (2010-2012)
- Mechanical Engineering Outstanding Research Award (2009)
- Mechanical Engineering Chair Faculty Fellow (2008)
- NSF Career Award (2007)
- Woodward Outstanding Mechanical Engineering Faculty (2006-2007)
- University of Colorado Graduate School Junior Faculty Development Award (2005)
- Long, R., Qi, H. J., Dunn, M.L., 2013, Modeling the mechanics of covalently-adaptable polymer networks with temperature-dependent bond exchange reactions, Soft Matter, 9 (15), 4083 - 4096.
- Jennie Ryu, J., D’Ameto, M., Cui, X., Long,K.N., Qi, H.J., Dunn, M.L., 2012. Photo-Origami-Bending and folding polymers with light, Applied Physics Letter, 100, 161908.
- Ge, Q., Luo, X., Rodriguez, E.D., Zhang, X., Mather, P., Dunn, M.L., Qi, H.J., 2012, Thermo-mechanical Behaviors of Shape Memory Elastomer Composites, J. Mech. Phys. Solids., v60, 67-83.
- Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y., Qi,H.J., 2011. A 3D Finite Deformation Constitutive Model for Amorphous Shape Memory Polymers: A Multi-Branch Modeling Approach for Nonequilibrium Relaxation Processes. Mechanics of Materials, v43: 853-869.
- Wang, A., Hansen, C, Ge, Q., Maruf, S. H., Ahn, D. U., Qi, H.J., and Ding, Y., 2011, Programmable, Pattern-Memorizing Polymer Surface, Advanced Materials, 23:3669-3673.
- Kao, P.H., Lammers, S., Tian, L., Qi, H.J., Hunter, K., Stenmark, K.R., Shandas, R., 2011. A Microstructurally-Driven Model for Pulmonary Artery Tissue, ASME Journal of Biomechanical Engineering, 051002-1-12 (12 pages).
- Long, K. N., Scott, T. F., Qi, H. J., Bowman, C. N., and Dunn., M. L., 2009. Photomechanics of Light-Activated Polymers, J. Mech. Phys. Solids, 57:1103-1121.
- T. D. Nguyen, H. J. Qi, F. Castro, K.N. Long, 2008. A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation, J. Mech. Phys. Solids,56:2792-2814.
- H.J. Qi, T.D. Nguyen, F. Castro, C. Yakacki, R. Shandas, 2008. Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers, J. Mech. Phys. Solids, 56:1730-1751.
- H.J. Qi, M.C. Boyce, 2005. Stress-strain behavior of thermoplastic polyurethanes, Mech. Mater., 36:817-839.
- H.J. Qi, M.C. Boyce, 2004. Constitutive model for stretch-induced softening of stress strain behavior of elastomeric material, J. Mech. Phys. Solids, November, 52:2187-2205.
- H.J. Qi, K.B.K. Teo, K.K.S. Lau, M.C. Boyce, W.I. Milne, J. Robertson, K.K. Gleason, 2003. Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation, J. Mech. Phys. Solids, 51:2213-2237.