Education

  • Ph.D., University of Illinois at Urbana-Champaign, 1983
  • M.S., University of Illinois at Urbana-Champaign, 1981
  • B.S., University of Nebraska, 1979

Research Areas and Descriptors

Background

Regents’ Professor and Carter N. Paden, Jr. Distinguished Chair in Metals Processing, Dave McDowell joined Georgia Tech in 1983 and holds a dual appointment in the GWW School of Mechanical Engineering and the School of Materials Science and Engineering. He served as Director of the Mechanical Properties Research Laboratory from 1992-2012. In 2012 he was named Founding Director of the Institute for Materials (IMat), one of Georgia Tech’s Interdisciplinary Research Institutes charged with fostering an innovation ecosystem for research and education.  He has served as Executive Director of IMat since 2013.

Dr. McDowell's research focuses on nonlinear constitutive models for engineering materials, including cellular metallic materials, nonlinear and time dependent fracture mechanics, finite strain inelasticity and defect field mechanics, distributed damage evolution, constitutive relations and microstructure-sensitive computational approaches to deformation and damage of heterogeneous alloys, combined computational and experimental strategies for modeling high cycle fatigue in advanced engineering alloys, atomistic simulations of dislocation nucleation and mediation at grain boundaries, multiscale computational mechanics of materials ranging from atomistics to continuum, and systems-based computational materials design.

A Fellow of SES, ASM International, ASME and AAM, McDowell is the recipient of the 1997 ASME Materials Division Nadai Award for career achievement and the 2008 Khan International Medal for lifelong contributions to the field of metal plasticity. McDowell currently serves on the editorial boards of several journals, and is co-Editor of the International Journal of Fatigue.

Research

Dr. McDowell's research focuses on nonlinear constitutive models for engineering materials, including cellular metallic materials, nonlinear and time dependent fracture mechanics, finite strain inelasticity and defect field mechanics, distributed damage evolution, constitutive relations and microstructure-sensitive computational approaches to deformation and damage of heterogeneous alloys,combined computational and experimental strategies for modeling high cycle fatigue in advanced engineering alloys, atomistic simulations of dislocation nucleation and mediation at grain boundaries,multiscale computational mechanics of materials ranging from atomistics to continuum, and systems-based computational materials design.

Distinctions

  • ASM International Fellow for "advancing the state of knowledge in microstructure property relationships of structural materials," 2008
  • International Journal of Fatigue Co-Editor-in-Chief, 2007-present
  • Khan International Medal for outstanding, lifelong contributions to the field of plasticity, 2008
  • American Society of Mechanical Engineers
    • Materials Division Senior Orr Award for the best fatigue and fracture paper to appear within the twelve-month period July 2005 through June 2006 in the ASME Journal of Engineering Materials and Technology.
    • Nadai Award (Materials Division), 1997
    • Fellow, 1995
    • ASME/Pi Tau Sigma Gold Medal, 1987
  • Georgia Institute of Technology
    • Outstanding Interdisciplinary Activities Award, 2001
    • Outstanding Doctoral Thesis Advisor Award, 2000
    • Outstanding Faculty Research Author Award Co-Recipient, 1993
  • Society of Engineering Science
    • Fellow, 2007
    • President, 2002
  • Jack M. Zeigler (BME 1948) Woodruff School Outstanding Educator Award, 2004
  • Society of Engineering Science President, 2002; Elected Fellow of SES in 2006
  • University of Nebraska College of Engineering Advisory Board Member, 2004-present.
  • University of Illinois at Urbana-Champaign, Department of Mechanical and Industrial Engineering Member of the M&IE Alumni Board, 1999-2002.
  • International Journal of Fracture Regional  Editor, 1997-2005.
  • Editorial Advisory Board, International Journal of Plasticity, 1991-present
  • Editorial Advisory Board, International Journal of Damage Mechanics, 1993-present
  • Editorial Advisory Board, International Journal of Fatigue and Fracture of Engineering Materials and Structures, 1994-present
  • Editorial Board, Journal of Multiscale Computational Engineering, 2002-present
  • Editorial Board, Mechanics of Advanced Materials and Structures, 2004-present
  • American Society for Testing and Materials Outstanding Service Award, 2001
  • Societ Francaise de Metallurgie et de Materiaux Medaille d'Honneur, 1994
  • Woodruff School Faculty Fellow, 1991-1996
  • American Society for Engineering Education Dow Outstanding Young Faculty Award, 1990
  • Alfred Noble Prize, Jointly awarded by the American Society of Civil Engineers, American Society of Mechanical Engineers, and Institute of Electrical and Electronics Engineers, 1986
  • National Science Foundation Presidential Young Investigator Award, 1986
  • Society of Automotive Engineers Ralph R. Teetor Award, 1986
  • Distinguished Alumni Award, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, April 24, 2009.
  • Special Issue of International Journal of Plasticity dedicated to honor contributions of D.L. McDowell, Volume 26, Issue 9, September 2010, pp. 1277-1420.
  • Inter-University Mechanics Lecture Tour (Madrid, Granada, Seville, Zaragoza universities in Spain), November 3-11, 2010 (invited).
  • Elected Fellow of the American Academy of Mechanics, 2011.

Representative Publications

  • Tschopp, M.A., Spearot, D.E., and McDowell, D.L.,“Influence of Grain Boundary Structure on Dislocation Nucleation in FCC Metals,” Dislocations in Solids, A Tribute to F.R.N. Nabarro, Ed. J.P. Hirth, Elsevier Publ., Vol. 14, 2008, pp. 43-139.
  • McDowell, D.L. and Olson, G.B., “Concurrent Design of Hierarchical Materials and Structures,” Scientific Modeling and Simulation (CMNS), Vol. 15, No. 1, 2008, p. 207.
  • McDowell, D.L., “Viscoplasticity of Heterogeneous Metallic Materials,” Materials Science and Engineering R: Reports, Vol. 62, Issue 3, 2008, pp. 67-123.
  • Derlet, P.M., Gumbsch, P., Hoagland, R., Li, J., McDowell, D.L., Van Swygenhoven, H., and Wang, J., “Atomistic simulations of dislocations in confined volumes,” MRS Bulletin., Vol. 34, No. 3, 2009, pp. 184-189.
  • Przybyla, C.P. and McDowell, D.L.,“Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100,” International Journal of Plasticity, Vol. 26, No. 3, 2010, pp. 372-394.
  • Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., “Shear Deformation Kinematics of Bicrystalline Grain Boundaries in Atomistic Simulations,” Modeling and Simulation in Materials Science and Engineering, Vol. 18, No. 1, 2010, 015002.
  • McDowell, D.L. and Dunne, F.P.E.,“Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation,”International Journal of Fatigue, Special Issue on Emerging Frontiers in Fatigue, Vol. 32, No. 9, 2010, pp. 1521-1542.
  • McDowell, D.L., “A Perspective on Trends in Multiscale Plasticity,” International Journal of Plasticity, special issue in honor of David L. McDowell, Vol. 26, No. 9, 2010, pp. 1280-1309.
  • Austin, R.A. and McDowell, D.L., “A Viscoplastic Constitutive Model for Polycrystalline fcc Metals at Very High Rates of Deformation,” International of Plasticity, Vol. 27, No. 1, 2011, pp. 1-24.
  • Tucker, G.J. and McDowell, D.L., “Non-Equilibrium Grain Boundary Structure and Inelastic Deformation using Atomistic Simulations,”International Journal of Plasticity, Vol. 27, No. 6, 2011, pp. 841-857.
  • Mayeur, J.R., McDowell, D.L., and Bammann, D.J.,“Dislocation-Based Micropolar Single Crystal Plasticity: Comparison of Multi-and Single-Criterion Theories,” Journal of Mechanics and Physics of Solids, doi:10.1016/j.jmps.2010.09.013.
  • Xiong, L., Tucker, G.J., McDowell, D.L., and Chen, Y.,“Coarse-Grained Atomistic Simulation of Dislocations,” Journal of the Mechanics and Physics of Solids, Vol. 59, 2011, pp. 160-177.
  • McDowell, D.L., Ghosh, S., and Kalidindi, S.R.,“Representation and Computational Structure-Property Relations of Random Media,” JOM, Vol. 63, No. 3, 2011, pp. 45-51.
  • Przybyla, C.P. and McDowell, D.L., “Simulated Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Duplex Ti-6Al-4V,” International Journal of Plasticity, Special Issue in Honor or Nobutada Ohno, clearVol. 27, No. 12, 2011, pp. 1871-1895.
  • Mayeur, J.R., and McDowell, D.L., “Bending of Single Crystal Thin Films as Predicted by Micropolar Crystal Plasticity,” special issue of the Int. J. Engineering Science in memorium to C. Eringen, Vol. 49, 2011, pp. 1357-1366.
  • Przybyla, C.P. and McDowell, D.L., “Microstructure-Sensitive Extreme Value Probabilities of High Cycle Fatigue for Surface vs. Subsurface Crack Formation in Duplex Ti-6Al-4V,” Acta Materialia, Vol. 60, No. 1, 2012, pp. 293-305.
  • Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., “Continuum Metrics for Deformation and Microrotation from Atomistic Simulations: Application to Grain Boundaries,” special issue of the Int. J. Engineering Science in memoriam to C. Eringen, Vol. 49, 2011, pp. 1424-1434.
  • Svoboda, J., Fischer, F.D., and McDowell, D.L, “Derivation of the Phase Field Equations from the Thermodynamic Extremal Principle,” Acta Materialia, Vol. 60, No. 1, 2012, pp. 396-406.
  • Patra, A. and McDowell, D.L., “Crystal Plasticity-Based Constitutive Modeling of Irradiated bcc Structures,” Philosophical Magazine, Vol. 92, No. 7, 2012, pp. 861-887.
  • Xiong, L., Deng, Q., Tucker, G.J., McDowell, D.L., and Chen, Y., “A Concurrent Scheme for Passing Dislocations from Atomistic to Continuum Regions,” Acta Materialia, Vol. 60, No. 3, 2012, pp. 899-913.
  • Tucker, G.J., Tiwari, S., Zimmerman, J.A., and McDowell, D.L., “Investigating the Deformation of Nanocrystalline Copper with Microscale Kinematic Metrics and Molecular Dynamics,” Journal of the Mechanics and Physics of Solids, Vol. 60, No. 3, 2012, pp. 471-486.
  • Austin, R.A. and McDowell, D.L., “Parameterization of a Rate-Dependent Model of Shock-Induced Plasticity for Copper, Nickel and Aluminum,” Int. J. Plasticity, Vol.32-33, 2012, pp. 134-154.
  • Wang, W., Zhong, Y., Lu, K., Lu, L, McDowell, D.L., and Zhu, T.,”Size Effects and Strength Fluctuation in Nanoscale Plasticity,” Acta Materialia, Vol. 60, 2012, pp. 3302-3309.
  • Austin, R.A., McDowell, D.L., and Benson, D.J., “Mesoscale Simulation of Shock Wave Propagation in Discrete Ni/Al Powder Mixtures,  J. Applied Physics, Vol. 111, No. 12, 2012, pp. 123511-123511-9.
  • Castelluccio, G.M. and McDowell, D.L., “Assessment of Small Fatigue Crack Growth Driving Forces in Single Crystals with and without Slip Bands, Int. Journal of Fracture, Vol. 176, No. 1, 2012, pp. 49-64.
  • Panchal, J.H., Kalidindi, S.R., and McDowell, D.L., “Key Computational Modeling Issues in ICME,” Computer-Aided Design, Vol. 45, No. 1, 2013, pp. 4–25.
  • Xiong, L., McDowell, D.L., and Chen, Y., “Nucleation and Growth of Dislocation Loops in Cu, Al and Si by a Coupled Atomistic-Continuum Method,” Scripta Materialia, Vol. 67, 2012, pp. 633-636.
  • Patra, A. and McDowell, D.L., “Continuum Modeling of Localized Deformation in Irradiated bcc Materials,” Journal of Nuclear Materials, Vol. 432, No. 1-3,  2013, pp. 414–427.
  • Tiwari, S., Tucker, G.J. and McDowell, D.L., “Resolving defect growth avalanches during elastic-plastic deformation of Nanocrystalline Cu through atomistic simulations,” Philosophical Magazine, 2012, DOI: 10.1080/14786435.2012.722236.
  • Castelluccio, G.M. and McDowell, D.L., “Effect of Annealing Twins on Crack Initiation under High Cycle Fatigue Conditions,” Journal of Materials Science, Vol. 48 no. 6, 2013, pp. 2376-2387. 
  • Mayeur, J.R. and McDowell, D.L., “An Evaluation of Higher-Order Single Crystal Strength Models for Constrained Thin Films Subjected to Simple Shear,” Journal of the Mechanics and Physics of Solids, 2013, 10.1016/j.jmps.2013.04.007.
  • Clayton, J.D., Hartley, C.S., and McDowell, D.L., “The Missing Term in the Decomposition of Finite Deformation,” International Journal of Plasticity, Vol. 52, 2014, pp. 51-76.
  • Salajegheh, N. and McDowell, D.L., “Microstructure-Sensitive Weighted Probability Approach for Modeling Surface to Bulk Transition of High Cycle Fatigue Failures Dominated by Primary Inclusions,” International Journal of Fatigue, Vol. 59, 2014, pp. 188-199.
  • Xiong, L., McDowell, D.L., and Chen, Y., “Sub-THz Phonon Drag on Dislocations by Coarse-grained Atomistic Simulations,” International Journal of Plasticity, Vol. 55, 2014, pp. 268–278.
  • Ellis, B.D., DiPaolo, B.P., McDowell, D.L., and Zhou, M., “Experimental investigation and multiscale modeling of Ultra-High-Performance Concrete panels subject to blast loading,” Int. J. Impact Engineering, Vol. 69, 2014, pp. 95-103.
  • Austin, R.A., McDowell, D.L., and Benson, D.J., “The deformation and mixing of several Ni/Al powders under shock wave loading: effects of initial configuration,” Modeling and Simulation in Materials Science and Engineering, Vol. 22, 2014, p. 025018.
  • Castelluccio, G.M., and McDowell, D.L., “A Mesoscale Approach for Growth of 3D Microstructurally Small Fatigue Cracks in Polycrystals,” Int. J. Damage Mechanics, 2013, doi:10.1177/1056789513513916.
  • Narayanan, S., McDowell, D.L., and Zhu, T., “Crystal Plasticity Model for BCC Iron Atomistically Informed by Kinetics of Correlated Kinkpair Nucleation on Screw Dislocations,” Journal of the Mechanics and Physics of Solids, Vol. 65, 2014, pp. 54-68.
  • Mayeur, J.R. and McDowell, D.L., “A Comparison of Gurtin-Type and Micropolar Single Crystal Plasticity with Generalized Stresses,” International Journal of Plasticity, Vol. 57, 2014, pp. 29-51.
  • Castelluccio, G.M., Musinski, W.D. and McDowell, D.L., “Recent Development in Assessing Microstructure-Sensitive Early Stage Fatigue of Polycrystals,” Current Opinion in Solid State and Materials Science, http://dx.doi.org/10.1016/j.cossms.2014.03.001.
  • Castelluccio, G.M., and McDowell, D.L., "Mesoscale Modeling of Microstructurally Small Fatigue Cracks in Metallic Polycrystals," Mat. Sci. Eng. A, Vol. 598, No. 26, 2014, pp. 34-55.
  • Dong, X., McDowell, D.L., Kalidindi, S.R., and Jacob, K.I., “Dependence of mechanical properties on crystal orientation of semi-crystalline polyethylene structures,” Polymer, 2014, http://dx.doi.org/10.1016/j.polymer.2014.03.045.
  • Patra, A., Zhu, T. and McDowell, D.L., “Constitutive equations for modeling non-Schmid effects in single crystal bcc-Fe at low and ambient temperatures,” Int. J. Plasticity, doi10.1016/j.ijplas.2014.03.016.