Biographical Sketch of
Mark D. Jenks

Mark Jenks was named 787 Wing and Empennage Life Cycle Product Team Leader in June 2003. He leads the international team responsible for design, manufacture, certification, and delivery of the wing, empennage, and landing gear for the 787. Prior to his current assignment, he was Director of Technology Integration for the Sonic Cruiser program, responsible for identifying and integrating all program requirements for advanced technology and assuring their readiness to support production.

Previously, Jenks was Chief Engineer and Deputy Program manager for the International Space Station (ISS) in Huntsville, Alabama. Included was primary design, manufacturing, and test responsibility for the major U.S. pressurized elements, including the “Unity” Node and “Destiny” Laboratory modules, the Joint U.S./Russian Airlock, as well as the common berthing mechanism, hatch, and payload racks used throughout the station.

Before coming to Huntsville in early 1996, Jenks managed the Helicopters Division Developmental Center in Philadelphia. As Center Manager, Jenks had responsibility for all Developmental Operations in Philadelphia, including the manufacture, assembly, and test of Boeing’s portion of the RAH-66 Comanche helicopter and structural testing of the V-22 Static Test Article. Prior to taking responsibility for Developmental Operations, Jenks held positions in Manufacturing Technology, Tool Engineering, Internal Audit, Project Engineering and Aerodynamics Research.

A Boeing employee since 1983, Jenks was selected by Boeing for the MIT Leaders for Manufacturing Program in 1989 and received Master’s degree in Govd Management and Materials Engineering. Jenks also holds B.S. and M.S. degrees in Aeronautical Engineering from Rensselaer Polytechnic Institute.
Boeing's 787 Dreamliner represents not only a breakthrough in aerospace structures technology with its first ever composite fuselage and wing, it also represents a major advance in large scale global collaboration. The development process began with the Sonic Cruiser, a radically new concept for increasing the speed of large commercial jet transports. Early on, it was recognized that the same basic suite of technologies that enabled higher speed at acceptable cost, could also provide vastly superior operating economics (through lighter weight and lower maintenance costs) with today's Mach .85 performance. After an exhaustive process working with the world's major airlines, Boeing selected efficiency over speed and the 7E7 (later renamed the 787 Dreamliner) was born.

The formal development process began with program launch in 2003 and has recently moved into initial production with the fabrication of the first major structures for airplane #1 at seven major production sites around the world (Alenia, Kawasaki, Fuji, Mitsubishi, Spirit, Vought and Boeing) and the start of major assembly of the wing at FHI's Handa plant outside of Nagoya, Japan. The initial full-scale structural tests of the wing have been completed, the first production fuselage sections are in production at four major sites around the world and the first massive composite wing skins have been produced by MHI in their new facility in Nagoya.

The other breakthrough developed during this period was the creation of a whole new business model for global collaboration. Along with an advanced suite of design/collaboration tools developed with Daussault Systems, Boeing assembled a network of the world's leading aerospace firms to participate in the early configuration development process and take primary responsibility for the detail design and manufacture of large integrated volumes of the airplane. This diverse base of highly integrated partnerships has lead to vastly improved efficiencies through technology sharing as well as leveraging the differences in company and national cultures and their varied approaches to problem-solving.

In the end, the true competitive advantage stems not from any individual technology, but rather from the combined ability to integrate intimate customer knowledge, to identify and develop the highest leverage technologies from around the world and to effectively marshal the diverse strengths of the global aerospace industry.