NRE 4610 Introduction to Plasma Physics and Fusion Engineering (Elective)

Catalog Description:	NRE 4610 Introduction to Plasma Physics and Fusion Engineering (3-0-3)								
	Prerequisite: senior standing in science or engineering								
	A first course in plasma physics and an introduction to magnetic confinement fusion:								
	basic plasma physics, magnetic confinement concepts, fusion engineering and a review of								
	the current status of fusion research.								
Textbook:	W. M. Stacey, Fusion: An Introduction to the Physics and Technology of Magnetic								
	Confinement Fusion, John Wiley, New York, 1981.								

Topics Covered:

- 1. Basic plasma properties
- 2. Single particle motions
- 3. Plasmas as fluids
- 4. Plasma equilibrium & stability
- 5. Confinement concepts
- 6. Plasma transport
- 7. Plasma heating
- 8. Plasma-wall interaction
- 9. Magnets
- 10. EnergysStorage and transfer
- 11. Interaction of radiation with matter
- 12. Blanket and shield
- 13. Tritium and vacuum
- 14. Fusion reactor design
- 15. Status of fusion R&D

Course Outcomes:

Outcome 1: To introduce the student to the plasma physics and engineering aspects of magnetic confinement fusion and how they interact in the design of a fusion device.

- 1.1 Students will demonstrate an understanding of the basic physics and engineering principles involved in magnetic fusion (topics 1-13 above)
- 1.2 Students will demonstrate an ability to apply the physics and engineering principles involved in magnetic fusion to determine the design parameters of a fusion device.

Outcome 2: To acquaint the student with the status and current leading issues in the development of fusion as an energy source

2.1 Students will demonstrate a knowledge of the leading issues and present status of fusion research.

Correlation between Course Outcomes and Program Educational Outcomes:

NRE 4610 Introduction to Plasma Physics and Fusion Engineering		Outcome a		Outcome b	Outcome c	Outcome d	Outcome e	Outcome f	Outcome g	Outcome h	Outcome i	Outcome j	Outcome k
Course Outcomes	i	ii	iii										
Course Outcome 1.1	х	х	Х		Х					Х	Х		x
Course Outcome 1.2	х	х	Х		Х					Х	Х		х
Course Outcome 2.1												х	

Prepared by: Weston Stacey Revised: October 2007