NRE 4214 Reactor Engineering (Required)

Catalog Description:	NRE 4214 Reactor Engineering (3-0-3)
	Prerequisite: ME 3322, ME3345, ME 3340
	Nuclear heat generation; fuel elements' thermal analysis; single and two phase flow and
	heat transfer in reactor systems; core thermal design and treatment of uncertainties.
Textbook:	Todreas, N. E. and M. S. Kazimi, Nuclear Systems I: Thermal Hydraulic Fundamentals,
	Taylor and Francis (1990).

Topics Covered:

- 1. Power Plant Descriptions/Thermal Design Principles**
- 2. Reactor Heat Generation
- 3. Thermal Analysis of Fuel Elements
- 4. Single Phase Fluid Mechanics/Pressure drop in rod bundles
- 5. Single Phase Heat Transfer
- 6. Two-Phase Flow
- 7. Boiling Heat Transfer
- 8. Reactor Thermal Hydraulic Design/ Uncertainty Analysis

Course Outcomes:

Outcome 1: To familiarize the students with various reactor types and their main design and operational characteristics.

- 1.1 Students will demonstrate an understanding of the main design features and operational characteristics of various reactor types.
- 1.2 Students will demonstrate an understanding of the basic thermal design principles of nuclear fission reactors.
- Outcome 2: To teach the students how to estimate the volumetric heat generation rate in fission reactor cores under normal operation and shutdown conditions.
 - 2.1 Students will be able to calculate the volumetric heat generation rate and its distribution within the core under normal and shutdown conditions.
- Outcome 3: To teach the students how to analyze the thermal performance of nuclear fuel elements.
 - 3.1 Students will be able to calculate the temperature distribution within fuel elements including the effects of temperature-dependent conductivity, non-uniform heat generation, gap conductance, and fuel element restructuring.
 - 3.2 Students will be able to estimate the maximum linear heat rate, surface heat flux and volumetric heat generation rate to assure compliance with thermal design limits.
- Outcome 4: To teach the students the basic fluid mechanics of single phase reactor cooling systems.
 - 4.1 Students will be able to setup and apply shell momentum balances for single phase systems.
 - 4.2 Students will be able to determine the velocity distributions in steady incompressible, Newtonian flow systems.
- Outcome 5: To teach the students how to calculate pressure drop in reactor systems, including tube bundles, and spacer grids.
 - 5.1. Students will demonstrate the ability to calculate single phase pressure drop in channels including entrance effects.
 - 5.2 Students will demonstrate the ability to calculate the pressure drop in tube bundles including spacer grids and minor losses.
- Outcome 6: To teach the students how to analyze the heat transfer characteristics of single phase reactor cooling systems.
 - 6.1 Students will be able to setup and apply shell energy balances to determine the temperature distributions in single phase systems.
 - 6.2 Students will be able to estimate the heat transfer coefficients for non-metallic and metallic coolants in channels and rod bundles.
- Outcome 7: To teach the students the basic fluid mechanics of two-phase systems, including flow regime maps, void-quality-slip relations, pressure drop, and critical flow.
 - 7.1 Students will differentiate between various two-phase flow regimes.

- 7.2 Students will understand the relationship between quality, void fraction and slip ratio.
- 7.3 Students will be able to use two-phase friction multiplier models to estimate the frictional pressure drop in two-phase systems.
- 7.4 Students will be able to calculate the acceleration and gravitational pressure drop in two-phase systems.

Outcome 8: To teach the students the fundamentals of Boiling heat transfer, and its implications for reactor design.

- 8.1. Students will understand the various physical processes taking place in boiling heat transfer.
 - 8.2 Students will understand the differences between the various boiling regimes.
 - 8.3 Students will be able to estimate the critical heat flux and understand its implications in core thermal design.
- Outcome 9: To teach the students the fundamentals of core thermal design, with attention to design uncertainty analysis and hot channel factors.
 - 9.1. Students will be able to understand how uncertainties in various design parameters and correlations are accounted for in the design process.
 - 9.2 Students will be able to estimate hot spot subfactors and overall hot spot factors.
 - 9.3 Students will understand and apply the basic principles of statistical design.

Correlation between Course Outcomes and Program Educational Outcomes:

NRE 4214 Reactor Engineering		Outcome a		Outcome b	Outcome c	Outcome d	Outcome e	Outcome f	Outcome g	Outcome h	Outcome i	Outcome j	Outcome k
Course Outcomes		ii	iii										
Course Outcome 1.1												Х	
Course Outcome 1.2					Х							Х	
Course Outcome 2.1							Х						
Course Outcome 3.1			Х				Х						
Course Outcome 3.2					Х		Х						
Course Outcome 4.1			Х				Х						
Course Outcome 4.2			Х				Х						
Course Outcome 5.1							Х						
Course Outcome 5.2							Х						
Course Outcome 6.1			Х				Х						
Course Outcome 6.2							Х						
Course Outcome 7.1							Х						
Course Outcome 7.2							Х						
Course Outcome 7.3							Х						
Course Outcome 7.4							Х						
Course Outcome 8.1							Х						
Course Outcome 8.2							Х						
Course Outcome 8.3							Х						
Course Outcome 9.1					Х		Х						
Course Outcome 9.2					Х		Χ						
Course Outcome 9.3					Х		Х						

Prepared by: Said Abdel-Khalik Revised: October 2007