NRE 4208 Nuclear Reactor Physics II (Required)

Catalog Description:	NRE 4208 Nuclear Reactor Phys II (4-0-4)					
	Prerequisite: NRE 3208 (Intro Reactor Phys.), MATH 2403					
	(Differential Equations)					
	This course covers the physical theory of nuclear reactors.					
Textbook:	J. Duderstadt and L.J. Hamilton, "Nuclear Reactor Analysis",					
	Wiley (1976)					
References:	W.M. Stacey, "Nuclear Reactor Physics", Wiley (2007)					

Topics Covered:

- 1. Review of neutron cross sections, differential cross sections, resonances, Doppler effect
- 2. Review of 4- and 6-factor formulas
- 3. Introduction to transport theory: Boltzmann-equation; solutions in 1-D geometry; derivation of diffusion equation from transport theory.
- 4. One-speed diffusion theory, expansion functions and criticality.
- 5. Point kinetics without / with feedback, stability of feedback systems
- 6. Multi-group theory
- 7. Slowing down and resonance treatment
- 8. Thermal spectrum and cross sections
- 9. Cell calculations
- 10. Reactivity control
- 11. Xenon and samarium poisoning, depletion.
- 12. Mathematics relevant for reactor physics, including 1st and 2nd order ODEs, Laplace transform, etc.

Course Outcomes:

- 1. Students will be able to explain the relationships among variables underlying the theory of nuclear fission reactors using mathematical models and their associated physical behaviors.
- 2. Students will be able to solve static reactor physics problems in one-speed and multigroup diffusion theory and the concepts related to group cross sections in the thermal, resonance, and fast energy regions.
- 3. Students will be able to analyze reactor kinetic and dynamic problems using point kinetics and quantify the cause and effect of core composition changes.
- 4. Students will be knowledgeable of numerical tools to solve differential equations.

Correlation between Course Outcomes and Program Educational Outcomes:

NRE 4208 Nuclear Reactor Phys II		Outcome a			some c	some d	some e	come f	tome g	some h	come i	come j	ome k
Course Outcomes	i	ii	iii	Outc	Outo	Outo	Outo	Outo	Outo	Outc	Outo	Outo	Outo
Course Outcome 1	Х	Х					Х						
Course Outcome 2	Х	Х					Х						
Course Outcome 3	Χ	Χ					Х						
Course Outcome 4													Х

Prepared by: W.F.G van Rooijen Revised: October 2008