NRE 3208 Nuclear Reactor Physics I (Required)

Catalog Description:	NRE3208 Nuclear Reactor Phys I (3-0-3)						
	Prerequisites: NRE3301 (Rad. Phys.), MATH2403 (Diff. Eq.)						
	Introductory treatment of reactor physics						
Textbook:	Lamarsh, J.R. and Baratta, A.J., "Introduction to Nuclear						
	Engineering", 3rd edition, Prentice-Hall (2001)						
Reference:	E.E. Lewis, "Fundamentals of nuclear reactor physics", 1st						
	edition, Elsevier (2008)						

NRE3208 provides an introduction to Reactor Physics and is a prerequisite for the senior-year Reactor Physics course NRE4208.

Topics Covered:

- 1. Nuclear cross sections, overview of neutron interactions [short]
- 2. Nuclear reactors and nuclear power, including recent developments in reactor design¹
- 3. Neutron diffusion and moderation, including one-speed diffusion equation, two-group calculations
- 4. Nuclear reactor theory, including criticality and eigenfunctions, four-factor formula, six-factor formula
- 5. Reactor kinetics and dynamics, including reactivity and feedbacks, reactivity worth of control rods
- 6. Reactor licensing, safety and the environment, including recent developments in plant licensing²
- 7. Mathematics relevant to reactor physics modeling³

Course outcomes:

- 1. The student will acquire a working understanding of the range of technical topics that constitute the discipline of reactor physics, including steady state and time-dependent diffusion theory
- 2. The student will understand the relationship between basic Reactor Physics concepts and actual reactor characteristics
- 3. Students will be knowledgeable of the major nuclear power reactor types
- 4. Students will be able to solve simple differential equations relevant to reactor physics

² Use of "Nuclear News" or equivalent sources is encouraged for reactor design and licensing to cover "contemporary issues".

¹ This material should be updated to the latest "state of the art" (i.e. those being considered for NRC certification)

³ Use of numerical exercises using appropriate software packages

Correlation between Course Outcomes and Program Educational Outcomes:

NRE 3208 Nuclear Reactor Phys I		Outcome a		utcome b	utcome c	utcome d	utcome e	utcome f	utcome g	utcome h	utcome i	utcome j	utcome k
Course Outcomes	i	ii	iii	0	0	0	0	0	0	0	0	0	0
Course Outcome 1	Х	Х											
Course Outcome 2							Χ						
Course Outcome 3												Х	
Course Outcome 4	Х						Χ						

Prepared by: W.F.G van Rooijen Revised: October 2008