Since Dr. James Truchard founded National Instruments (NI) in 1976, NI has worked to equip engineers and scientists with tools that accelerate productivity, innovation, and discovery. Prior to founding National Instruments, Dr. Truchard worked as the director of the Acoustical Measurements Division at the University of Texas Applied Research Laboratory. Dr. Truchard wanted to create a place to work that was fun and provided strong career paths for employees. As he often remarks, he “didn’t see a job I wanted [in Austin], so I created one!” Truchard and his management team have created an award-winning corporate culture that has been recognized as one of the top 25 “World’s Best Multinational Workplaces” by the Great Place to Work Institute. James Truchard earned a B.S. and an M.S. in physics, and a Ph.D. in Electrical Engineering from the University of Texas at Austin. He is a member of the National Academy of Engineering and the Royal Swedish Academy of Engineering Sciences.

Mechanical Engineering - Leading the Way to Intelligent System Design

Today’s mechanical engineers are leaders in the design and development of intelligent systems. They have significant expertise in multi-disciplinary design and instrumentation as well as mechanical, thermal, fluidic, and biological systems. Mechanical engineers often team up with software designers, FPGA designers, analog and digital designers in order to bring an embedded product to market.

Any technology that can reduce or eliminate the need for these additional embedded system design resources will speed time to market and reduce development costs. In this talk, Dr. Truchard will discuss key technical challenges in the area of intelligent systems design. He will then describe how the integration of software and hardware technologies into a unified and open embedded system development platform will help to remove hurdles between simulation, prototyping, and deployment of intelligent systems. With this technical approach, mechanical engineers can continue their leadership and foster innovation for future systems.

This year’s lecture will be given by:

DR. JAMES TRUCHARD

Cofounder, President, and CEO of National Instruments

Since Dr. James Truchard founded National Instruments (NI) in 1976, NI has worked to equip engineers and scientists with tools that accelerate productivity, innovation, and discovery. Prior to founding National Instruments, Dr. Truchard worked as the director of the Acoustical Measurements Division at the University of Texas Applied Research Laboratory. Dr. Truchard wanted to create a place to work that was fun and provided strong career paths for employees. As he often remarks, he “didn’t see a job I wanted [in Austin], so I created one!” Truchard and his management team have created an award-winning corporate culture that has been recognized as one of the top 25 “World’s Best Multinational Workplaces” by the Great Place to Work Institute. James Truchard earned a B.S. and an M.S. in physics, and a Ph.D. in Electrical Engineering from the University of Texas at Austin. He is a member of the National Academy of Engineering and the Royal Swedish Academy of Engineering Sciences.

Mechanical Engineering - Leading the Way to Intelligent System Design

Today’s mechanical engineers are leaders in the design and development of intelligent systems. They have significant expertise in multi-disciplinary design and instrumentation as well as mechanical, thermal, fluidic, and biological systems. Mechanical engineers often team up with software designers, FPGA designers, analog and digital designers in order to bring an embedded product to market.

Any technology that can reduce or eliminate the need for these additional embedded system design resources will speed time to market and reduce development costs. In this talk, Dr. Truchard will discuss key technical challenges in the area of intelligent systems design. He will then describe how the integration of software and hardware technologies into a unified and open embedded system development platform will help to remove hurdles between simulation, prototyping, and deployment of intelligent systems. With this technical approach, mechanical engineers can continue their leadership and foster innovation for future systems.
Woodruff School Spring Events

ME 2110 Design Competition

Friday, April 5, 2013 at 5 p.m.
MaRC Atrium

Sophomore student teams design and build robots to compete in the ME 2110 Design Competition. The project theme for this semester is Tech Startup. The student teams will be designing, prototyping and fielding autonomous machines, or startup robots, that will emulate a small technology startup venture and will compete to launch products to market, generate revenue, and stimulate growth.

Zeigler Outstanding Educator Lecture

Given by the 2012 Zeigler Outstanding Educator Award Winner, Srinivas Garimella

Wednesday, April 17, 2013 at 11 a.m.
MRDC 4211

Engineering Education: It Really Should Be About Human Transformation

Education in today’s universities should transcend simple characterizations as the transfer or exchange of information, or even somewhat more expansive interpretations as being the progression of information to knowledge.

Air Products Undergrad Research Symposium

Thursday, April 18, 2013 from 2 p.m. to 4 p.m.
Love Atrium

The Undergrad Research Symposium provides ME undergrads the opportunity to present their research work in a public forum. The symposium is sponsored by Air Products and Chemicals, Inc.

Capstone Design Expo

Thursday, April 25, 2013 at 6 p.m.
McCamish Pavilion

Students from multiple disciplines at Georgia Tech work in teams to develop various prototypes for real-world applications. Both industry and campus created projects are showcased at the Capstone Design Expo. This spring’s semester event will comprise of 632 students and 125 different projects. Teams will be competing for up to $8,000 in prize monies.

facebook.com/MEGeorgiaTech twitter.com/MEGeorgiaTech youtube.com/MEGeorgiaTech linkdin.com/MEGeorgiaTech