M.S. Thesis Presentation by Shiva Prasad Sambu
Thursday, August 2, 2001

(Dr. David Rosen, advisor)

"A Design for Manufacture Method for Rapid Prototyping and Rapid Tooling"

Abstract

Rapid Prototyping (RP) and Rapid Tooling (RT) are layer based additive fabrication technologies that provide immense potential in obtaining functional prototypes at very low cost and time.  Though these technologies have potential applications, they are not completely utilized due to the designer’s lack of knowledge about their capabilities and limitations.  In this thesis, a systematic approach is developed to perform the DFM for RP and RT scenarios.  The problems investigated are: 1) how to capture the design and manufacturing requirements and solve the DFM problem with little burden on designer, and 2) how to facilitate automation of the DFM phase for RP and RT to reduce the burden on the manufacturer.  Solving these problems facilitates seamless interface between designer and manufacturer and also reduces the manufacturing cost and time for the process.
Based on Decision-Based Design, a DFM framework for RP and RT is developed to facilitate the transfer of information and requirements from designer to manufacturer.  The approach of this work is that manufacturer can solve the DFM problem if the designer’s information and requirements are provided to him along with the design freedom.  In this approach, decisions are made concurrently as opposed to the traditional sequential process.

Based on physical experiments and response surface methodology, a set of automation tools are developed to facilitate manufacturer in quick product realization.  The tools include, RP process planner to perform process planning of the RP machine, mold life predictor to estimate the life of RP molds and C-OptdesX code to solve the DFM problem.  The DFM framework and the embedded automation tools are tested through two case studies: a robot arm and a camera roller.